# Establishing ex vivo brain-pituitary and gonadal models for PFAS toxicity assessment



Sina Velzi Sina.velzi@nmbu.no NSFT Winter Meeting 2025

























### > Brain:

 Releases gonadotropin-releasing hormone (GnRH) in response to external and internal stimuli.





### > Pituitary gland:

- Responds to GnRH by releasing Luteinizing hormone (LH) and Follicle-stimulating hormone (FSH)
- These hormones travel through the bloodstream to the gonads





### > Gonads

- Respond by producing sex hormones (testosterone, estrogen, and progesterone).
- These hormones are responsible for sexual development and gametogenesis.









### Endocrine-disrupting chemicals (EDCs)

EDCs are substances that **interfere** with the endocrine system.







Cosmetics

Water-repellent Clothing

**Cleaning Products** 

Polyfluoroalkyl substances (PFAS), are an important group of EDCs that:

- Bioaccumulate in organisms
- Resist degradation







Water



Food processing/packaging



### How do EDCs cause endocrine disruption?

Interference with hormone synthesis

Interference with hormone transport

Interference with hormone storage





### How do EDCs cause endocrine disruption?

Interference with hormone synthesis













































Poster ID PT9 by Simona Kavaliauskiene et al.



### Ex vivo brain-pituitary model



### Brain/pituitary cell viability:









This method has a current viability of up to **2-5 days** is particularly important for testing chemicals that may impact the BPG axis.

### Methods to be applied

### **Gene expression effects:**



### Changes in cell numbers in transgenic line:





### In vitro gamete toxicity models



### Methods to be applied

### **Sperm/oocyte quality evaluation:**





# Validate the brain-pituitary and gamete model





### Validate the brain-pituitary and gamete model







# Acknowledgment



Norwegian
University of
Life Sciences







Assoc. Prof. Mette H.B. Müller



Researcher Romain Fontaine



Prof. Em. Erik Ropstad



Postdoc Simona Kavaliauskiene



Assoc. Prof. Amin Sayyari



Researcher Christiaan Henkel





Senior Engineer Arturas Kavaliauskis



Department Engineer
Anthony Marcel Roger Gerard Peltier

